New ArrivalsHealth & WellnessValentine’s DayClothing, Shoes & AccessoriesHomeKitchen & DiningGroceryHousehold EssentialsFurnitureOutdoor Living & GardenBabyToysVideo GamesElectronicsMovies, Music & BooksBeautyPersonal CareGift IdeasParty SuppliesCharacter ShopSports & OutdoorsBackpacks & LuggageSchool & Office SuppliesPetsUlta Beauty at TargetTarget OpticalGift CardsBullseye’s PlaygroundDealsClearanceTarget New Arrivals Target Finds #TargetStyleStore EventsAsian-Owned Brands at TargetBlack-Owned or Founded Brands at TargetLatino-Owned Brands at TargetWomen-Owned Brands at TargetLGBTQIA+ ShopTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores
Symbolic Data Analysis and the Sodas Software - by  Edwin Diday & Monique Noirhomme-Fraiture (Hardcover) - 1 of 1

Symbolic Data Analysis and the Sodas Software - by Edwin Diday & Monique Noirhomme-Fraiture Hardcover

$191.95

In Stock

Eligible for registries and wish lists

Sponsored

About this item

Highlights

  • Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets.
  • About the Author: Edwin Diday, Centre De Recherche en Mathématiques de la Décision, Université Paris 9, France Edwin is a Professor of Computer Science, with 50 published papers, and 14 authored or edited books to his name.
  • 476 Pages
  • Mathematics, Probability & Statistics

Description



Book Synopsis



Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events.
This book is the result of the work f a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT. It includes a full explanation of the new SODAS software developed as a result of this project. The software and methods described highlight the crossover between statistics and computer science, with a particular emphasis on data mining.



From the Back Cover



Classical statistical techniques are often inadequate when it comes to analysing some of the large and internally variable datasets common today. Symbolic Data Analysis (SDA) has evolved in response to this problem and is a vital tool for summarizing information in such a way that the resulting data is of a manageable size. Symbolic data, represented by

intervals, lists, histograms, distributions, curves and the like, keeps the "internal variation" of summaries better than standard data. SDA therefore plays a key role in the interaction between statistics and data processing, and has established itself as an important tool for analysing official statistics.

Through an extension of the concepts employed in data mining, the Editors provide an advanced guide to the techniques required to analyse symbolic data. Contributions from leading experts in the field enable the reader to build models and make predictions about future events.

The book:

  • Provides new graphical tools for the interpretation of large data sets.
  • Extends standard statistics, data analysis, data mining and knowledge discovery to symbolic data.
  • Introduces the SODAS software, which is complementary to existing data analysis software (e.g. SAS, SPSS, SPAD) that are unable to work on symbolic data.
  • Induces, exports, and compares knowledge from one database to another.
  • Features a supporting website hosting the software, and user manual.

Symbolic Data Analysis and the SODAS Software is primarily aimed at practitioners of symbolic data analysis, such as statisticians and economists, within both the public and private sectors. There is also much of interest to postgraduate students and researchers within web mining, text mining, and bioengineering.



About the Author



Edwin Diday, Centre De Recherche en Mathématiques de la Décision, Université Paris 9, France
Edwin is a Professor of Computer Science, with 50 published papers, and 14 authored or edited books to his name. He has led international research teams in Symbolic Data Analysis, and is the founder of the field.

M. Noirhomme-Fraiture, Institute of Computer Science, University of Namur, Belgium
Monique Noirhomme-Fraiture is Professor and Head of the Unit of Applied Mathematics at the above faculty. She is involved in several HCI projects as well as having organized conferences and workshops within this field. She has contributed to 28 published papers and co-authored 2 books.

Dimensions (Overall): 9.79 Inches (H) x 6.83 Inches (W) x 1.24 Inches (D)
Weight: 2.14 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 476
Genre: Mathematics
Sub-Genre: Probability & Statistics
Publisher: Wiley-Interscience
Theme: General
Format: Hardcover
Author: Edwin Diday & Monique Noirhomme-Fraiture
Language: English
Street Date: March 1, 2008
TCIN: 1008777367
UPC: 9780470018835
Item Number (DPCI): 247-11-2773
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1.24 inches length x 6.83 inches width x 9.79 inches height
Estimated ship weight: 2.14 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy