New ArrivalsHealth & WellnessValentine’s DayClothing, Shoes & AccessoriesHomeKitchen & DiningGroceryHousehold EssentialsFurnitureOutdoor Living & GardenBabyToysVideo GamesElectronicsMovies, Music & BooksBeautyPersonal CareGift IdeasParty SuppliesCharacter ShopSports & OutdoorsBackpacks & LuggageSchool & Office SuppliesPetsUlta Beauty at TargetTarget OpticalGift CardsBullseye’s PlaygroundDealsClearanceTarget New Arrivals Target Finds #TargetStyleStore EventsAsian-Owned Brands at TargetBlack-Owned or Founded Brands at TargetLatino-Owned Brands at TargetWomen-Owned Brands at TargetLGBTQIA+ ShopTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores
Clustering Methodology for Symbolic Data - (Wiley Computational Statistics) by  Lynne Billard & Edwin Diday (Hardcover) - 1 of 1

Clustering Methodology for Symbolic Data - Wiley Computational Statistics by Lynne Billard & Edwin Diday Hardcover

$80.99Save $15.96 (16% off)

In Stock

Eligible for registries and wish lists

Sponsored

About this item

Highlights

  • Covers everything readers need to know about clustering methodology for symbolic data--including new methods and headings--while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data--paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples.
  • About the Author: LYNNE BILLARD, PHD, is University Professor in the Department of Statistics at the University of Georgia, USA.
  • 352 Pages
  • Mathematics, Probability & Statistics
  • Series Name: Wiley Computational Statistics

Description



Book Synopsis



Covers everything readers need to know about clustering methodology for symbolic data--including new methods and headings--while providing a focus on multi-valued list data, interval data and histogram data

This book presents all of the latest developments in the field of clustering methodology for symbolic data--paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses.

Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering.

  • Provides new classification methodologies for histogram valued data reaching across many fields in data science
  • Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis
  • Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data
  • Considers classification models by dynamical clustering
  • Features a supporting website hosting relevant data sets

Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.



From the Back Cover



Covers everything readers need to know about clustering methodology for symbolic data--including new methods and headings--while providing a focus on multi-valued list data, interval data and histogram data

This book presents all of the latest developments in the field of clustering methodology for symbolic data--paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses.

Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering.

Clustering Methodology for Symbolic Data:

  • Provides new classification methodologies for histogram valued data reaching across many fields in data science
  • Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis
  • Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data
  • Considers classification models by dynamical clustering
  • Features a supporting website hosting relevant data sets

Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.



About the Author



LYNNE BILLARD, PHD, is University Professor in the Department of Statistics at the University of Georgia, USA. She has over two hundred and twenty-five publications mostly in leading journals, and co-edited six books. Professor Billard is a former president of ASA, IBS, and ENAR.

EDWIN DIDAY, PHD, is the Professor of Computer Science at Centre De Recherche en Mathematiques de la Decision, CEREMADE, Université Paris-Dauphine, Université PSL, Paris, France. He has published fifty-eight papers and authored or edited fourteen books. Professor Diday is also the founder of the Symbolic Data Analysis field.

Dimensions (Overall): 9.1 Inches (H) x 6.1 Inches (W) x .9 Inches (D)
Weight: 1.35 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 352
Genre: Mathematics
Sub-Genre: Probability & Statistics
Series Title: Wiley Computational Statistics
Publisher: Wiley
Theme: General
Format: Hardcover
Author: Lynne Billard & Edwin Diday
Language: English
Street Date: October 28, 2019
TCIN: 1008779099
UPC: 9780470713938
Item Number (DPCI): 247-18-0980
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.9 inches length x 6.1 inches width x 9.1 inches height
Estimated ship weight: 1.35 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy