Informatics and Machine Learning Discover a thorough exploration of how to use computational, algorithmic, statistical, and informatics methods to analyze digital data Informatics and Machine Learning: From Martingales to Metaheuristics delivers an interdisciplinary presentation on how analyze any data captured in digital form.
About the Author: Stephen Winters-Hilt, PhD, is Sole Proprietor at Meta Logos Systems, Albuquerque, NM, USA, which specializes in Machine Learning, Signal Analysis, Financial Analytics, and Bioinformatics.
592 Pages
Mathematics, Probability & Statistics
Description
About the Book
"This book provides an interdisciplinary presentation on machine learning, bioinformatics and statistics. This book is an accumulation of lecture notes and interesting research tidbits from over two decades of the author's teaching experience. The chapters in this book can be traversed in different ways for different course offerings. In the classroom, the trend is moving towards hands-on work with running code. Therefore, the author provides lots of sample code to explicitly explain and provide example-based code for various levels of project work. This book is especially useful for professionals entering the rapidly growing Machine Learning field due to its complete presentation of the mathematical underpinnings and extensive examples of programming implementations. Many Machine Learning (ML) textbooks miss a strong intro/basis in terms of information theory. Using mutual information alone, for example, a genome's encoding scheme can be 'cracked' with less than one page of Python code. On the implementation side, many ML professional/reference texts often do not shown how to actually access raw data files and reformat the data into some more usable form. Methods and implementations to do this are described in the proposed text, where most code examples are in Python (some in C/C++, Perl, and Java, as well). Once the data is in hand all sorts of fun analytics and advanced machine learning tools can be brought to bear."--
Book Synopsis
Informatics and Machine Learning
Discover a thorough exploration of how to use computational, algorithmic, statistical, and informatics methods to analyze digital data
Informatics and Machine Learning: From Martingales to Metaheuristics delivers an interdisciplinary presentation on how analyze any data captured in digital form. The book describes how readers can conduct analyses of text, general sequential data, experimental observations over time, stock market and econometric histories, or symbolic data, like genomes. It contains large amounts of sample code to demonstrate the concepts contained within and assist with various levels of project work.
The book offers a complete presentation of the mathematical underpinnings of a wide variety of forms of data analysis and provides extensive examples of programming implementations. It is based on two decades worth of the distinguished author's teaching and industry experience.
A thorough introduction to probabilistic reasoning and bioinformatics, including Python shell scripting to obtain data counts, frequencies, probabilities, and anomalous statistics, or use with Bayes' rule
An exploration of information entropy and statistical measures, including Shannon entropy, relative entropy, maximum entropy (maxent), and mutual information
A practical discussion of ad hoc, ab initio, and bootstrap signal acquisition methods, with examples from genome analytics and signal analytics
Perfect for undergraduate and graduate students in machine learning and data analytics programs, Informatics and Machine Learning: From Martingales to Metaheuristics will also earn a place in the libraries of mathematicians, engineers, computer scientists, and life scientists with an interest in those subjects.
From the Back Cover
Discover a thorough exploration of how to use computational, algorithmic, statistical, and informatics methods to analyze digital data
Informatics and Machine Learning: From Martingales to Metaheuristics delivers an interdisciplinary presentation on how analyze any data captured in digital form. The book describes how readers can conduct analyses of text, general sequential data, experimental observations over time, stock market and econometric histories, or symbolic data, like genomes. It contains large amounts of sample code to demonstrate the concepts contained within and assist with various levels of project work.
The book offers a complete presentation of the mathematical underpinnings of a wide variety of forms of data analysis and provides extensive examples of programming implementations. It is based on two decades worth of the distinguished author's teaching and industry experience.
A thorough introduction to probabilistic reasoning and bioinformatics, including Python shell scripting to obtain data counts, frequencies, probabilities, and anomalous statistics, or use with Bayes' rule
An exploration of information entropy and statistical measures, including Shannon entropy, relative entropy, maximum entropy (maxent), and mutual information
A practical discussion of ad hoc, ab initio, and bootstrap signal acquisition methods, with examples from genome analytics and signal analytics
Perfect for undergraduate and graduate students in machine learning and data analytics programs, Informatics and Machine Learning: From Martingales to Metaheuristics will also earn a place in the libraries of mathematicians, engineers, computer scientists, and life scientists with an interest in those subjects.
About the Author
Stephen Winters-Hilt, PhD, is Sole Proprietor at Meta Logos Systems, Albuquerque, NM, USA, which specializes in Machine Learning, Signal Analysis, Financial Analytics, and Bioinformatics. He received his doctorate in Theoretical Physics from the University of Wisconsin, as well as a PhD in Computer Science and Bioinformatics from the University of California, Santa Cruz.
Dimensions (Overall): 9.0 Inches (H) x 6.0 Inches (W) x 1.25 Inches (D)
Weight: 2.08 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 592
Genre: Mathematics
Sub-Genre: Probability & Statistics
Publisher: Wiley
Theme: General
Format: Hardcover
Author: Stephen Winters-Hilt
Language: English
Street Date: January 6, 2022
TCIN: 1008784113
UPC: 9781119716747
Item Number (DPCI): 247-27-1981
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.
Shipping details
Estimated ship dimensions: 1.25 inches length x 6 inches width x 9 inches height
Estimated ship weight: 2.08 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO
Return details
This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.