New ArrivalsHealth & WellnessValentine’s DayClothing, Shoes & AccessoriesHomeKitchen & DiningGroceryHousehold EssentialsFurnitureOutdoor Living & GardenBabyToysVideo GamesElectronicsMovies, Music & BooksBeautyPersonal CareGift IdeasParty SuppliesCharacter ShopSports & OutdoorsBackpacks & LuggageSchool & Office SuppliesPetsUlta Beauty at TargetTarget OpticalGift CardsBullseye’s PlaygroundDealsClearanceTarget New Arrivals Target Finds #TargetStyleStore EventsAsian-Owned Brands at TargetBlack-Owned or Founded Brands at TargetLatino-Owned Brands at TargetWomen-Owned Brands at TargetLGBTQIA+ ShopTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores
Surrogate Modeling and Optimization - by  Nam-Ho Kim (Hardcover) - 1 of 1

Surrogate Modeling and Optimization - by Nam-Ho Kim Hardcover

$135.00

In Stock

Eligible for registries and wish lists

Sponsored

About this item

Highlights

  • Expert reference on building surrogate models, optimization using them, prediction uncertainty associate with them, and their potential failure, with practical implementation in MATLAB Surrogate Modeling and Optimization explains the meaning of different surrogate models and provides an in-depth understanding of such surrogates, emphasizing how much uncertainty is associated with them, and when and how a surrogate model can fail in approximating complex functions and helping readers understand theory through practical implementation in MATLAB.
  • About the Author: Nam-Ho Kim is a Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida.
  • 466 Pages
  • Technology, Structural

Description



About the Book



"Surrogate modeling is a technique that involves creating simplified mathematical models, or surrogates, to represent complex and computationally intensive systems and find the best possible solution to a given problem. In mechanical and aerospace engineering, surrogate modeling and optimization are used to efficiently design and analyze complex systems, like aircraft wings or car structures. By using surrogates, engineers can explore a wide range of design variables and identify optimal solutions without the need for time-consuming simulations, thus accelerating the design process. Surrogate modeling is closely related to machine learning, as it often involves using machine learning techniques to create and utilize surrogate models. In surrogate modeling, machine learning algorithms are employed to learn the relationship between input variables and output responses of a complex system, based on a set of training data"-- Provided by publisher.



Book Synopsis



Expert reference on building surrogate models, optimization using them, prediction uncertainty associate with them, and their potential failure, with practical implementation in MATLAB

Surrogate Modeling and Optimization explains the meaning of different surrogate models and provides an in-depth understanding of such surrogates, emphasizing how much uncertainty is associated with them, and when and how a surrogate model can fail in approximating complex functions and helping readers understand theory through practical implementation in MATLAB. This book enables readers to obtain an accurate approximate function using as few samples as possible, thereby allowing them to replace expensive computer simulations and experiments during design optimization, sensitivity analysis, and/or uncertainty quantification.

The book is organized into three parts. Part I introduces the basics of surrogate modeling. Part II reviews various theories and algorithms of design optimization. Part III presents advanced topics in surrogate modeling, including the Kriging surrogate, neural network models, multi-fidelity surrogates, and efficient global optimization using Kriging surrogates.

The book is divided into 10 chapters. Each chapter contains about 10 examples and 20 exercise problems. Lecture slides and a solution manual for exercise problems are available for instructors on a companion website.

Sample topics discussed in Surrogate Modeling and Optimization include:

  • Various designs of experiments, such as those developed for linear and quadratic polynomial response surfaces (PRS) in a boxlike design space
  • Criteria for constrained and unconstrained optimization and the most important optimization theories
  • Various numerical algorithms for gradient-based optimization
  • Gradient-free optimization algorithms, often referred to as global search algorithms, which do not require gradient or Hessian information
  • Detailed explanations and implementation on Kriging surrogate, often referred to as Gaussian Process, especially when samples include noise
  • The combination of a small number of high-fidelity samples with many low-fidelity samples to improve prediction accuracy
  • Neural network models, focusing on training uncertainty and its effect on prediction uncertainty
  • Efficient global optimization using either polynomial response surfaces or Kriging surrofates

Surrogate Modeling and Optimization is an essential learning companion for senior-level undergraduate and graduate students in all engineering disciplines, including mechanical, aerospace, civil, biomedical, and electrical engineering. The book is also valuable for industrial practitioners who apply the surrogate model to solve their optimization problems.



About the Author



Nam-Ho Kim is a Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida. His research interests include design under uncertainty, prognostics and health management, verification validation and uncertainty quantification, and nonlinear structural mechanics. He has more than twenty years of experience teaching materials in these fields to graduate students.

Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x 1.0 Inches (D)
Weight: 2.25 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 466
Genre: Technology
Sub-Genre: Structural
Publisher: Wiley
Format: Hardcover
Author: Nam-Ho Kim
Language: English
Street Date: December 30, 2025
TCIN: 1008807552
UPC: 9781394245819
Item Number (DPCI): 247-36-7607
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1 inches length x 7 inches width x 10 inches height
Estimated ship weight: 2.25 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy