Sponsored
Hands-On Scikit-Learn for Machine Learning Applications - by David Paper Paperback
$40.99Save $14.00 (25% off)
In Stock
Eligible for registries and wish lists
Sponsored
About this item
Highlights
- Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book.
- About the Author: Dr. David Paper is a professor at Utah State University in the Management Information Systems department.
- 242 Pages
- Computers + Internet, Intelligence (AI) & Semantics
Description
Book Synopsis
Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine.
All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complexmachine learning algorithms.
Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python.
What You'll Learn
- Work with simple and complex datasets common to Scikit-Learn
- Manipulate data into vectors and matrices for algorithmic processing
- Become familiar with the Anaconda distribution used in data science
- Apply machine learning with Classifiers, Regressors, and Dimensionality Reduction
- Tune algorithms and find the best algorithms for each dataset
- Load data from and save to CSV, JSON, Numpy, and Pandas formats
Who This Book Is For
The aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book.
From the Back Cover
Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine.
All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complex machine learning algorithms.
Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python.
What You'll Learn
- Work with simple and complex datasets common to Scikit-Learn
- Manipulate data into vectors and matrices for algorithmic processing
- Become familiar with the Anaconda distribution used in data science
- Apply machine learning with Classifiers, Regressors, and Dimensionality Reduction
- Tune algorithms and find the best algorithms for each dataset
- Load data from and save to CSV, JSON, Numpy, and Pandas formats
About the Author
Dr. David Paper is a professor at Utah State University in the Management Information Systems department. He wrote the book Web Programming for Business: PHP Object-Oriented Programming with Oracle and he has over 70 publications in refereed journals such as Organizational Research Methods, Communications of the ACM, Information & Management, Information Resource Management Journal, Communications of the AIS, Journal of Information Technology Case and Application Research, and Long Range Planning. He has also served on several editorial boards in various capacities, including associate editor. Besides growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, Inc., and the Phoenix Small Business Administration. He has performed IS consulting work for IBM, AT&T, Octel, Utah Department of Transportation, and the Space Dynamics Laboratory. Dr. Paper's teaching and research interests include data science, process reengineering, object-oriented programming, electronic customer relationship management, change management, e-commerce, and enterprise integration.
Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x .54 Inches (D)
Weight: 1.0 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 242
Genre: Computers + Internet
Sub-Genre: Intelligence (AI) & Semantics
Publisher: Apress
Format: Paperback
Author: David Paper
Language: English
Street Date: November 18, 2019
TCIN: 1008783040
UPC: 9781484253724
Item Number (DPCI): 247-25-2074
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.
Shipping details
Estimated ship dimensions: 0.54 inches length x 7 inches width x 10 inches height
Estimated ship weight: 1 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO
Return details
This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.